Answer:
As we have calculated Z = -8.2345 THEREFORE critical value is -1.96 hence there is significant difference , neglect null hypothesis.
and two population are not equal
Explanation:
Given data:
Assuming null hypothesis be Hypothesis O (P1 = P2)
Assuming alternate hypothesis be Hypothesis A (P1 is not equal to P2)
![n_1 = 381](https://img.qammunity.org/2020/formulas/mathematics/college/1ljhjg30ma0g91rbpzmthfce9caey5smm4.png)
![p_1 =(191)/(381) = 0.5013](https://img.qammunity.org/2020/formulas/mathematics/college/1ahyjjtdx18it17cfqtjcx0v9qb8g4b8yo.png)
![n_2 =166](https://img.qammunity.org/2020/formulas/mathematics/college/pp04oko4jpidv84w9wc7m3tz7sqsmv5rob.png)
![p_2 = (145)/(166) = 0.8735](https://img.qammunity.org/2020/formulas/mathematics/college/vi71x4soc5kn1rq32y0vsieqwg2u3tjulc.png)
![P = (n_1 p_1 + n_2 p_2 )/(n_1 + n_2)](https://img.qammunity.org/2020/formulas/mathematics/college/q2cyokuhykgv24oyklce5wa6zn785u0y6b.png)
![P = (191 + 145)/(381+166) = 0.6143](https://img.qammunity.org/2020/formulas/mathematics/college/1b8joyomhynn4sdpwan0detkqhyg8nsrce.png)
Q = 1 - P = 0.3857
![SE =\sqrt{PQ ((1)/(n_1) + (1)/(n_2))}](https://img.qammunity.org/2020/formulas/mathematics/college/isjhc7zvprpww1akhpm4vlrbbaekchz5yg.png)
![= \sqrt{0.6143 * 0.3857 * ((1)/(381) + (1)/(166))}](https://img.qammunity.org/2020/formulas/mathematics/college/8gjfom14jpykl7c7mjgk7j5gft3yz25qlk.png)
SE = 0.0452
test statics
![Z = ((p_1 - p_2))/(SE)](https://img.qammunity.org/2020/formulas/mathematics/college/qa6b7s6fonap5m2ds2o34mccmupaqwmxfh.png)
![Z = (0.5013 - 0.8735)/(0.0452) = -8.2345](https://img.qammunity.org/2020/formulas/mathematics/college/p0eip9rv5fz3lo3cs2iyvz56uqs5c31gmu.png)
[taken 5% significance level]
from standard z table , critical value of
![Z = \pm 1.96](https://img.qammunity.org/2020/formulas/mathematics/college/66oezmcriw2m9cqbggo5ql7s9nbhgcr102.png)
As we have calculated Z = -8.2345 THERFORE critical value is -1.96 hence there is significant difference , neglect null hypothesis.
and two population are not equal