Answer:
A) {-13,-5}
Explanation:
Given expression:
![|K+9|=4](https://img.qammunity.org/2020/formulas/mathematics/college/ntifm43zg36qaz5oa5f5cdxlnhq7qlj18b.png)
We need to solve for
![K](https://img.qammunity.org/2020/formulas/physics/high-school/zjjigpt19lens9t8sw95hhpu0oem74ysx3.png)
Since
lies in the absolute brackets, so we can write the solution as (
) :
For
![K+9>0](https://img.qammunity.org/2020/formulas/mathematics/college/cp8awhn2mt8qonrq9cq0xy8f6tzq98nadx.png)
For
![K+9<0](https://img.qammunity.org/2020/formulas/mathematics/college/cevkiz1hie01l6bzjdzw2gk3ptc5ru1zju.png)
![K+9=-4](https://img.qammunity.org/2020/formulas/mathematics/college/b4mmdtifxupk1zronhu0dormyw7ohv7djx.png)
Solving for K individually.
Subtracting both sides by 9.
and
![K+9-9=-4-9](https://img.qammunity.org/2020/formulas/mathematics/college/b7m4oqcfgb42vx9ztx76ze0dxdot22550w.png)
and
![K=-13](https://img.qammunity.org/2020/formulas/mathematics/college/2yopcxmp7s9i35ew44972sfiz8yqry6gy7.png)
So, the solution can be written as {-13,-5}