Answer:
a) c ( 150, $ 4,000)
b) d ( 3 or 10 )
c) e 11,966,000 $
Explanation:
a) C(t) = 2x² - 600x + 49000
Taking derivatives on both sides of the equation
C´(t) = 4x - 600 C´(t) = 0 4x - 600 = 0 x = 150
And minimun cost is:
C(min) = 2x² - 600x + 49000 ⇒ C(min) = 2* ( 150)² - 600* (150) +49000
C(min) = 4000 $
b) x hundred of tems cost
C(x) = 2x² - 4x + 4 and revenue generated is R(x) = -4x² + 74x -176
Then C(x) should be equal to R(x)
2x² - 4x + 4 = -4x² + 74x -176
Solving for x
6x² - 78x + 180 = 0 ⇒ x² - 13x + 30 = 0
x₁,₂ = 13 ± √( 169 - 120) /2 x₁ = 10 x₂ = 3
c) Th profit for manufacturing and selling tablets
P(x) - 0,03*x² + 1200x - 34000
where x is numbers of tablets. If the company sells 20000 tablets then
P(x) = - 0,03* (20000)² + 1200 (20000) - 34000
P(x) = - 0,03 * 4 *10⁸ + 24* 10⁶ - 34000
P(x) = - 12000000 + 24000000 - 34000
P(x) = 11966000 $