Answer:
a)V= 2.09 m/s
b)TE= 0.56 J
c)K=50.47 N/m
d)a=29.23 m/s²
Step-by-step explanation:
Given that
m = 0.26 kg , T= 0.45 s ,A= 0.15 m
We know that time period given as

ω =Angular frequency


ω = 13.96 rad/s
The velocity at equilibrium
V= ω A
V= 13.96 x 0.15
V= 2.09 m/s
The total energy TE


TE= 0.56 J
The spring constant K
Maximum stored energy in the spring

From energy balance
U= TE

K A² = m V²


K=50.47 N/m
The maximum acceleration a
a= ω² A
a = 13.96² x 0.15 m/s²
a=29.23 m/s²