Answer: The cell potential of the above reaction is 1.2 V
Step-by-step explanation:
The given chemical reaction follows:
![Zn(s)+Cu^(2+)(aq.)\rightarrow Zn^(2+)(aq.)+Cu(s)](https://img.qammunity.org/2020/formulas/chemistry/college/6gzq73y5t7zmy1jrgpxg4tu3nv8p4l33f1.png)
Oxidation half reaction:
![Zn(s)\rightarrow Zn^(2+)+2e^-](https://img.qammunity.org/2020/formulas/chemistry/college/7mflmmvcelmw2an799nwotz5xzyj78ff4k.png)
Reduction half reaction:
![Cu^(2+)+2e^-\rightarrow Cu(s)](https://img.qammunity.org/2020/formulas/chemistry/college/cssm0v42wqrtbo831f9zop25jcn2iycyai.png)
To calculate the EMF of the cell, we use the Nernst equation, which is:
![E_(cell)=E^o_(cell)-(0.059)/(n)\log ([Zn^(2+)])/([Cu^(2+)])](https://img.qammunity.org/2020/formulas/chemistry/college/z8hza8vgjawa024fk9s0qonfqhq53xhor7.png)
where,
= electrode potential of the cell = ? V
= standard electrode potential of the cell = 1.1 V
n = number of electrons exchanged = 2
![[Cu^(2+)]=1.0M](https://img.qammunity.org/2020/formulas/chemistry/college/1sh277nli18a2l92an96rgjz04cgj25en1.png)
![[Zn^(2+)]=1.0* 10^(-3)M](https://img.qammunity.org/2020/formulas/chemistry/college/isi35x8dumjkff38ork68qvau6bg81xhqw.png)
Putting values in above equation, we get:
![E_(cell)=1.1-(0.059)/(2)* \log((1.0* 10^(-3))/(1.0))\\\\E_(cell)=1.2V](https://img.qammunity.org/2020/formulas/chemistry/college/u7c5d7mqmy7he75oq7m6tnf3cfm81wuw7w.png)
Hence, the cell potential of the above reaction is 1.2 V