53.4k views
4 votes
Given: △ABC, AB=5 square root 2

m∠A=45°, m∠C=30°

Find: BC and AC

1 Answer

0 votes

Answer:

Part a)
BC=10\ units

Part b)
AC=13.66\ units

Explanation:

step 1

Find the length side BC

Applying the law of sines

we know that


(AB)/(sin(C))=(BC)/(sin(A))

we have


AB=5√(2)\ units


A=45^o


C=30^o

substitute


(5√(2))/(sin(30^o))=(BC)/(sin(45^o))

solve for BC


BC=(5√(2))/(sin(30^o))(sin(45^o))


BC=10\ units

step 2

Find the measure of angle B

we know that

The sum of the interior angles in a triangle must be equal to 180 degrees

so


m\angle A+m\angle B+m\angle C=180^o

substitute the given values


45^o+m\angle B+30^o=180^o


75^o+m\angle B=180^o


m\angle B=180^o-75^o


m\angle B=105^o

step 3

Find the length side AC

Applying the law of sines

we know that


(AB)/(sin(C))=(AC)/(sin(B))

we have


AB=5√(2)\ units


A=45^o


B=105^o

substitute


(5√(2))/(sin(30^o))=(AC)/(sin(105^o))

solve for AC


AC=(5√(2))/(sin(30^o))(sin(105^o))


AC=13.66\ units

User Cfl
by
6.7k points