Answer:
1400m
Step-by-step explanation:
For spherical waves we can use the following relationship between distance and intensity:
![(I_(1))/(I_(2))=(r_(2)^2)/(r_(1)^2)](https://img.qammunity.org/2020/formulas/physics/college/60t9zlssrohonwswribp9xu3zidk0obvnm.png)
Where
and
are the first and second intensity, in
. And
is the first distance:
, and
the distace we want to find.
Clearing the previous equation or
![r_(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3ghvvp77oz6yww9108bsndlfl5d3kqnx9p.png)
.
This is what we will be using to find the answer, but fist we must convert the quantities 80dB and 40dB to
![W/m^2](https://img.qammunity.org/2020/formulas/physics/middle-school/40i9xiab3sislztnhmu88737oo5kvpcpui.png)
We will call the quantities in dB
and
:
![\beta_(1)=80dB](https://img.qammunity.org/2020/formulas/physics/college/p56lfex69kan7wwwodexf3dpi5k8wqt33d.png)
![\beta_(2)=40dB](https://img.qammunity.org/2020/formulas/physics/college/yw1n8vp21wniun66udnt29zsh9fj5k3jdh.png)
We will use the following to find the corresponding intensities
and
:
![\beta_(1)=10log(I_(1))/(I_(o))](https://img.qammunity.org/2020/formulas/physics/college/75k3lnmsht8vrcr1i3zlno15mkko5cq357.png)
![\beta_(2)=10log(I_(2))/(I_(o))](https://img.qammunity.org/2020/formulas/physics/college/y8w7cvqm9l3bzmyoc5vlk3jd6ah9k3ymev.png)
for both of these:
, and it is the minimum intensity that a human being perceives.
Thus, for
we have:
![80dB=10log(I_(1))/(I_(o))](https://img.qammunity.org/2020/formulas/physics/college/n22mzxfxaetysvlscsblw1wjojp0awdafn.png)
![8dB=log(I_(1))/(I_(o))](https://img.qammunity.org/2020/formulas/physics/college/d5wrgti1wcbt853lxbd3tzy46z6f2bd3bm.png)
And to eliminate the logarithm, we use its inverse operation, exponentiation.
![10^8=10^{log(I_(1))/(I_(0)) }](https://img.qammunity.org/2020/formulas/physics/college/nxz0jxjuxjh5bs4314y7582xvk66mf9ior.png)
![10^8=(I_(1))/(I_(0))](https://img.qammunity.org/2020/formulas/physics/college/xnrwwgw78gp7tqnavcsx3bu3qzoiappvum.png)
![I_(0)(10^8)=I_(1)](https://img.qammunity.org/2020/formulas/physics/college/ksm48l0gaz1oe8mxmc0b7i3spplht9wxdh.png)
replacing
:
![10^(-12)W/m^2(10^8)=I_(1)](https://img.qammunity.org/2020/formulas/physics/college/nkoby4tz82bagcehfjdmiirhk6expgwpo2.png)
![1x10^(-4)W/m^2=I_(1)](https://img.qammunity.org/2020/formulas/physics/college/ietvodtppyujepefi32q9llaf85yyrq8oi.png)
and similarly for
![I_(2)](https://img.qammunity.org/2020/formulas/chemistry/college/pf5av1g2zhfx7i7s8ccu128andyuuu1u5f.png)
![40dB=10log(I_(2))/(I_(o))](https://img.qammunity.org/2020/formulas/physics/college/kbjsyn7oca5cmp940tbaqhs9ueymg5sa8m.png)
![4dB=log(I_(2))/(I_(o))](https://img.qammunity.org/2020/formulas/physics/college/sx4tkpogjmkkqatjzogb3oy85fpeidibls.png)
![10^4=10^{log(I_(2))/(I_(0)) }](https://img.qammunity.org/2020/formulas/physics/college/ua5mjyrzno056u90kvnndr92ido5he6lf6.png)
![10^4=(I_(2))/(I_(0))](https://img.qammunity.org/2020/formulas/physics/college/m73l2n9m2ljq0kdj3n9j8v1r153b1tqpv7.png)
![I_(0)(10^4)=I_(2)](https://img.qammunity.org/2020/formulas/physics/college/v3elros03kfkuzva13o3jwsd3yzaaenkw5.png)
replacing
:
![10^(-12)W/m^2(10^4)=I_(2)](https://img.qammunity.org/2020/formulas/physics/college/cps7d10uqpxjftmggf51v5nye07lfbpv3q.png)
![1x10^(-8)W/m^2=I_(2)](https://img.qammunity.org/2020/formulas/physics/college/2euo1m0bcr3q0684rgso0f9emftmzs31es.png)
Now we substitute in the equation we had found for
![r_(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3ghvvp77oz6yww9108bsndlfl5d3kqnx9p.png)
![r_(2)=r_(1)\sqrt{(I_(1))/(I_(2))}\\r_(2)=(14m)\sqrt{(1x10^(-4)W/m^2)/(1x10^(-8)W/m^2)}\\r_(2)=(14m)√(10000)\\ r_(2)=(14m)(100)\\r_(2)=1400m](https://img.qammunity.org/2020/formulas/physics/college/nk4645izf2h7ijdadfsm7ye5b4s35b8k07.png)