Answer:
The impedance Z₁ is
![10+j6.19\ kVA](https://img.qammunity.org/2020/formulas/physics/college/ep0q36rgybltp2uyn72durnr8t37gnpbt8.png)
Step-by-step explanation:
Given that,
Dissipates power = 10 kW
Power factor = 0.85
Apparent power = 0.75
Frequency = 60 Hz
Suppose we need to calculate the impedance Z₁
The impedance Z₁ dissipates 10 kW with a power factor of 0.85 lagging
![\cos\theta=0.85](https://img.qammunity.org/2020/formulas/physics/college/bm827tlrr7xz55sfah191ew1t6l6icg00p.png)
![\theta=\cos^(-1)(0.85)](https://img.qammunity.org/2020/formulas/physics/college/lrqxm0cilvljuuc4a7l2wx9z4i12a497b4.png)
![\theta=31.78^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/5xv4l7aw6gqirh64ytpgpvofp0r9qznsae.png)
We need to calculate the impedance Z₁
Using formula of the impedance Z₁
![z_(1)=P_(1)+jQ_(1)](https://img.qammunity.org/2020/formulas/physics/college/z0jm0tezvvhl8kr0s0f4p7ouqiml3o2brl.png)
![z_(1)=P_(1)+j(10)/(0.85)\sin\theta](https://img.qammunity.org/2020/formulas/physics/college/yihvf47lq3b6n0jse49ilhjy190lf1qnlk.png)
Put the value into the formula
![z_(1)=10+j(10)/(0.85)\sin31.78](https://img.qammunity.org/2020/formulas/physics/college/ntypvm33heg5b8hg2opr1vfn5di9jqxp6y.png)
![z_(1)=10+j6.19\ kVA](https://img.qammunity.org/2020/formulas/physics/college/9ks6ejzx1ifibxnhu6cwoarvg5qxay328c.png)
Hence, The impedance Z₁ is
![10+j6.19\ kVA](https://img.qammunity.org/2020/formulas/physics/college/ep0q36rgybltp2uyn72durnr8t37gnpbt8.png)