Answer: The equilibrium constant for the above reaction is 1.31
Step-by-step explanation:
We are given:
Initial moles of nitrogen gas = 0.3411 moles
Initial moles of hydrogen gas = 1.661 moles
Equilibrium moles of nitrogen gas = 0.2001 moles
For the given chemical reaction:

Initial: 0.3411 1.661
At eqllm: 0.3411-x 1.661-3x 2x
Evaluating for 'x', we get:

Volume of the container = 2.50 L
The expression of
for the above equation follows:
![K_c=([NH_3]^2)/([N_2]* [H_2]^3)](https://img.qammunity.org/2020/formulas/chemistry/college/175fkrjb60weqvjr6fs0hjxmd7rff5ippi.png)
We are given:
![[NH_3]=(2* 0.141)/(2.50)=0.1128M](https://img.qammunity.org/2020/formulas/chemistry/college/hzbekjq491pg40akul1n4rolrue9reej5e.png)
![[N_2]=(0.2001)/(2.5)=0.08004M](https://img.qammunity.org/2020/formulas/chemistry/college/xsyqn8w9jlnry86ocmcfscatolndmicaqi.png)
![[H_2]=(1.661-(3* 0.141))/(2.5)=0.4952M](https://img.qammunity.org/2020/formulas/chemistry/college/z3aoj9he80dmklgibqra0tzjc0x03tyl85.png)
Putting values in above expression, we get:

Hence, the equilibrium constant for the above reaction is 1.31