156k views
1 vote
. Compute the scalar suface integral Z Z K z dS where K is the part of the sphere of radius 3 centered at the origin, that lies in the first octant. (Hint: Use the parametrization g(θ, φ) = h3 sin φ cos θ, 3 sin φ sin θ, 3 cos φi with domain of definition [0, π/2] × [0, π/2])

User Diversity
by
5.5k points

1 Answer

4 votes

With the parameterization


\vec g(\theta,\varphi)=\langle3\sin\varphi,\cos\theta,3\sin\varphi,\sin\theta,3\cos\varphi\rangle

take the normal vector to
K to be


(\partial\vec g)/(\partial\varphi)*(\partial\vec g)/(\partial\theta)=\langle9\cos\theta\sin^2\varphi,9\sin\theta\sin^2\varphi,9\cos\varphi\sin\varphi\rangle

which has magnitude


\left\|(\partial\vec g)/(\partial\varphi)*(\partial\vec g)/(\partial\theta)\right\|=√((9\cos\theta\sin^2\varphi)^2+(9\sin\theta\sin^2\varphi)^2+(9\cos\varphi\sin\varphi)^2)=9\sin\varphi

Then the integral is


\displaystyle\iint_Kz\,\mathrm dS=\int_0^(\pi/2)\int_0^(\pi/2)3\cos\varphi(9\sin\varphi)\,\mathrm d\theta\,\mathrm d\varphi


=\displaystyle\frac{27\pi}4\int_0^(\pi/2)\sin(2\varphi)\,\mathrm d\varphi=\boxed{\frac{27\pi}4}

User Aloiso Gomes
by
5.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.