Answer:
![0.0047^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/gi8mzcma7x53yzgw17k7558v85ilv0vtbj.png)
![0.018978^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/64bqsu366zy6dze07dpgl4zqxo9sdftxjb.png)
B) Dim
Step-by-step explanation:
= Angle
a = Pupil diameter
= Wavelength = 543 nm
Angular resolution is given by
![sin\theta=1.22(\lambda)/(a)\\\Rightarrow \theta=sin^(-1)\left(1.22(\lambda)/(a)\right)\\\Rightarrow \theta=sin^(-1)\left(1.22* (543* 10^(-9))/(8* 10^(-3))\right)\\\Rightarrow \theta=0.0047^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/1yv9l6zkynih56d28d5vbf8eabv78y3j4c.png)
For the dim light the angle is
![0.0047^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/gi8mzcma7x53yzgw17k7558v85ilv0vtbj.png)
![sin\theta=1.22(\lambda)/(a)\\\Rightarrow \theta=sin^(-1)\left(1.22(\lambda)/(a)\right)\\\Rightarrow \theta=sin^(-1)\left(1.22* (543* 10^(-9))/(2* 10^(-3))\right)\\\Rightarrow \theta=0.018978^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/7h2wy6lphuod8m1jissu2831cvkwj6am7r.png)
For the bright light the angle is
![0.018978^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/64bqsu366zy6dze07dpgl4zqxo9sdftxjb.png)
The angular separation and sharpness are inversely related. Here, the dim light will produce a sharp image.
Hence, option B is correct