23.1k views
11 votes
Pleasee help mee ;w;

Pleasee help mee ;w;-example-1
User Dimi Takis
by
4.2k points

2 Answers

5 votes

The ratio of sides remains same


\\ \sf\longmapsto (PQ)/(QS)=(RQ)/(RS)


\\ \sf\longmapsto (21)/(15)=(5x-16)/(3x-4)


\\ \sf\longmapsto (7)/(5)=(5x-16)/(3x-4)


\\ \sf\longmapsto 7(3x-4)=5(5x-16)


\\ \sf\longmapsto 21x-28=25x-80


\\ \sf\longmapsto 80-28=25x-21x


\\ \sf\longmapsto 4x=52


\\ \sf\longmapsto x=13

User Gview
by
4.1k points
9 votes

Answer:

  • x = 13

Explanation:

It is assumed PQS and RQS are similar triangles.

The ratio of corresponding sides is equal:

  • PS/RS = PQ/RQ

Substitute side lengths and solve for x:

  • 15/(3x - 4) = 21/(5x - 16)
  • 15(5x - 16) = 21(3x - 4)
  • 5(5x - 16) = 7(3x - 4)
  • 25x - 80 = 21x - 28
  • 25x - 21x = 80 - 28
  • 4x = 52
  • x = 52/4
  • x = 13
User Dan Ports
by
4.4k points