106k views
4 votes
Compute the scalar surface integral (z y) dS where T is the triangle (including its interior) with vertices (0, 0, 2), (0, 1, 0) and (1, 0, 0). g

User Martinr
by
5.3k points

1 Answer

4 votes

Parameterize
T by


\vec r(u,v)=(1-v)((1-u)(2\,\vec k)+u\,\vec\jmath)+v\,\vec\imath=v\,\vec\imath+u(1-v)\,\vec\jmath+2(1-u)(1-v)\,\vec k

with
0\le u\le1 and
0\le v\le1. Take the normal vector to
T to be


(\partial\vec r)/(\partial u)*(\partial\vec r)/(\partial v)=2(v-1)\,\vec\imath+2(v-1)\,\vec\jmath+(v-1)\,\vec k

with magnitude


\left\|(\partial\vec r)/(\partial u)*(\partial\vec r)/(\partial v)\right\|=√((2(v-1))^2+(2(v-1))^2+(v-1)^2)=3(1-v)

Then the integral is


\displaystyle\iint_Tyz\,\mathrm dS=\int_0^1\int_0^12u(1-u)(1-v)^2(3(1-v))\,\mathrm du\,\mathrm dv


=\displaystyle6\int_0^1\int_0^1u(1-u)(1-v)^3\,\mathrm du\,\mathrm dv


=\displaystyle6\left(\int_0^1u(1-u)\,\mathrm du\right)\left(\int_0^1(1-v)^3\,\mathrm dv\right)=\boxed{\frac14}

User Freezystem
by
5.2k points