Answer:
93°
Explanation:
∆UVW is isosceles, so the sum of its angle measures can be written as ...
m∠VUW + m∠VWU + m∠UVW = 180°
2(m∠VUW) + m∠UVW = 180° . . . . . base angles are congruent
2(b -61°) +116° = 180° . . . . . . . . . . . . .substitute for m∠VUW and m∠UVW
2b -6° = 180° . . . . . . . . . . . . . . . . . . . simplify
b - 3° = 90° . . . . . . . . . . divide by 2
b = 93° . . . . . . . . . . . . . .add 3°
The value of b is 93°.