172k views
4 votes
Expand the following logarithm completely

Expand the following logarithm completely-example-1
User H Hatfield
by
6.3k points

1 Answer

7 votes

Answer: ((3 ln 3 + 3 ln x) + 0.5 (ln (y^{2}-1) −

{ (2 (ln y) [ ln (x-1) ] ;

_________________________________________

Explanation:

Given problem: Expand the following logarithm completely:


ln [\frac{27x^(3)\sqrt{y^(2)-1 }  }{y(x-1)^(2) } }] ;

_________________________________________

To begin: Simplify:


[\frac{27x^(3)\sqrt{y^(2)-1 }  }{y(x-1)^(2) } }] ;

_________________________________________

First, within the "numerator" , rewrite: " √(y² - 1) " ; as:

"
(y^(2) - 1)^{(1)/(2) } " ;

→ Note the following property of exponents:


√(a) = a^{(1)/(2) } ;
{ a\geq 0}.

_________________________________________

Then rewrite the expression as:


ln [\frac{27x^(3)(y^(2)-1)^{(1)/(2) } }{y(x-1)^(2) } ]

Note the "quotient rule" property of the "natural logarithm (ln)" ;

ln (a/b) = ln a − ln b ;

So; we have:


ln [\frac{27x^(3)(y^(2)-1)^{(1)/(2) } }{y(x-1)^(2) } ];


ln [\frac{27x^(3)(y^(2)-1)^{(1)/(2) } } [\frac{27x^(3)(y^(2)-1)^{(1)/(2) } }<strong> </strong>;</p><p> </p><p>= &nbsp;ln &nbsp;[tex][\frac{27x^(3)(y^(2)-1)^{(1)/(2) } } -

ln
[\frac{27x^(3)(y^(2)-1)^{(1)/(2) } } ;

_______________________________________________

ln a = ln
[{27x^(3)(y^(2)-1)^{(1)/(2) } } ;

ln b = ln
(y^(2)-1)^{(1)/(2) } } ;

Simplify: ln a ln b ;

_______________________________________________

First, simplify: ln a ;

ln a = ln
{27x^(3)(y^(2)-1)^{(1)/(2) } } ;

→ Note the "product rule" for the "natural logarithm" {" ln " }:

→ ln(a * b) = ln(a) + ln(b) ;

→ ln (
{27x^(3) *
(y^(2)-1)^{(1)/(2) } } ) ;

in which:

a =
{27x^(3) ;

b =
(y^(2)-1)^{(1)/(2) } } ;

→ ln (a * b) =

(ln a + ln b ) =

= [ ln (
{27x^(3))] + [ ln [
(y^(2)-1)^{(1)/(2) } } = ? ;

First, simplify: "ln a " ;

→ ln a = ln
{27x^(3) = ? ;

→ Note the "product rule" for the "natural logarithm" {" ln " }:

→ ln(a * b) = ln(a) + ln(b) ;

→ ln {27 *x^{3}) = ln 27 + ln x³ ; in which: a = 27 ; b = x³ ;

→ ln(a * b) = ln(a) + ln(b) = ln 27 + ln (x³) = ? ;

Note: We have "x³ " ; Note the number: "27" ; the ∛27 = 3 ; a whole number integer; so rewrite "ln 27" as: "ln (3³)"

→ ln(a * b) = ln(a) + ln(b) = ln 27 + ln (x³) = ln (3³) + ln (x³) ;

= 3 ln 3 + 3 ln x .

So; "ln a " from above: → ln(a * b) = (ln a + ln b) ;

= [ ln (
{27x^(3))] + [ ln [
(y^(2)-1)^{(1)/(2) } } = ? ;

Rewrite: (3 ln 3 + 3 ln x) + [ln [
(y^(2)-1)^{(1)/(2) } } = ? ;

Now, find simplify the following "ln b" from above:

→ ln b = ln [
(y^(2)-1)^{(1)/(2) } } = (0.5) ln (y² -1) ;

Rewrite: → ln(a * b) = ln(a) + ln(b) = ln 27 + ln (x³) ;

= (3 ln 3 + 3 ln x) + [ln [
(y^(2)-1)^{(1)/(2) } } =

= (3 ln 3 + 3 ln x) + 0.5 (ln [
(y^(2)-1)) ;

_____________________________________

So, this is the value for the "ln" of the "numerator" of the given problem:

" (3 ln 3 + 3 ln x) + 0.5 (ln [
(y^(2)-1)) " .

_____________________________________

Now, let's find the value for the "ln" of the "denominator" of the given problem:

_____________________________________

→ " ln y(x -1)² " ;

= ln
y*
(x-1)^(2) } ] ;

→ Use the product rule: ln(a * b) = ln a + ln b ; a = "y" ; b = " (x-1)² " .

→ ln (
y*
(x-1)^(2) } ]) = (ln y) * (ln (x-1)²) ;

Note: ln (x-1)² = 2 ln (x-1) ;

→ (ln y) * [ ln (x-1)² ] = (ln y ) * 2 ln (x-1) = 2 (ln y) [ ln (x-1) ] .

_____________________________________

So, going back to our original given problem:

_____________________________________


ln [\frac{27x^(3)(y^(2)-1)^{(1)/(2) } }{y(x-1)^(2) } ] ;

→ Use the "quotient rule" property of the "natural logarithm (ln)" ;

ln (a/b) = ln a − ln b ;

Note: " ln a " = " (3 ln 3 + 3 ln x) + 0.5 (ln [
(y^(2)-1))

"ln b " = " (2 (ln y) [ ln (x-1) ]

___________________________________________

(ln a) - (ln b) =

((3 ln 3 + 3 ln x) + 0.5 (ln (y^{2}-1) −

{ (2 (ln y) [ ln (x-1) ] ;

___________________________________________

User Sreekanth
by
7.0k points