Answer:
![(4(3x^2y^4)^3)/((2x^3y^5)^4)=(27)/(4x^6y^8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ewnuz7egtgblpi3xvpy9vqkz30lptmvwje.png)
Explanation:
Given:
The expression to simplify is given as:
![(4(3x^2y^4)^3)/((2x^3y^5)^4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3qakn0a1swqsqxwvj22jyby5iw11nwz506.png)
First, we will simplify the numerator and denominator separately using the law of indices:
![(ka^mb^n)^p=k^pa^(m* p)b^(n* p)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/96l9vosmr7t2ydm1wzgtmm1q40qnge093m.png)
The numerator is simplified as:
![4(3x^2y^4)^3=4(3^3x^(2* 3)y^(4* 3))=4(27x^6y^(12))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2cy1wgjd2wzk5rl4n9c6b4k6gdh3digvxp.png)
The denominator is simplified as:
![(2x^3y^5)^4=2^4x^(3* 4)y^(5* 4)=16x^(12)y^(20)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9oewyqpuo6a7465hszdm96kwkb8sx1zgx7.png)
Now, we divide the simplified numerator by the simplified denominator. This gives,
![=(4(27x^6y^(12)))/(16x^(12)y^(20))\\=(4*27)/(16)* (x^6)/(x^(12))* (y^(12))/(y^(20))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fa4dmprfjhukig3fvuwhdm3wm7ja6uh2ut.png)
Now, we simplify using another law of indices which is given as:
![(a^m)/(a^n)=a^(m-n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5mjew8lj9xszpbhfd372i8ss4d5p390xt0.png)
![=(4*27)/(16)* (x^6)/(x^(12))* (y^(12))/(y^(20))\\=(27)/(4)* x^(6-12)* y^(12-20)\\=(27)/(4)x^(-6)y^(-8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vi71lbfcjtdz2efcv59zukqmar0izx56f4.png)
Now, we write the answer using only positive exponents and thus we use the given law of indices:
![a^(-m)=(1)/(a^m)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pg2ajo9qnpnpjpqxg7lp7vo6lt7lc8y4nc.png)
Therefore, the simplified form is:
![(27)/(4)x^(-6)y^(-8)=(27)/(4x^6y^8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/coa2yeozwcw0qmpx9ejanun625eimejrhd.png)