117k views
1 vote
Expand the given power by using Pascal’s triangle. (9a - 10b)^6

User Eugensk
by
7.4k points

1 Answer

2 votes

Answer:


531441a^6-3542940a^5b+9841500a^4b^2-14580000a^3b^3+12150000a^2b^4-5400000ab^5+1000000b^6

Explanation:

1 n=0

1 1 n=1

1 2 1 n=2

1 3 3 1 n=3

1 4 6 4 1 n=4

1 5 10 10 5 1 n=5

1 6 15 20 15 6 1 n=6

This is where n is the exponent in


(x+y)^n.


(x+y)^6=1x^6+6x^5y+15x^4y^2+20x^3y^3+15x^2y^4+6xy^5+1y^6

Now we want to expand:


(9a-10b)^6 or we we can rewrite as
(9a+(-10b))^6.

Let's replace
x with
(9a) and
y with
(-10b) in the expansion:


(x+y)^6=1x^6+6x^5y+15x^4y^2+20x^3y^3+15x^2y^4+6xy^5+1y^6


((9a)+(-10b))^6


=1(9a)^6+6(9a)^5(-10b)+15(9a)^4(-10b)^2+20(9a)^3(-10b)^3+15(9a)^2(-10b)^4+6(9a)(-10b)^5+1(-10b)^6

Let's simplify a bit:


=9^6a^6-60(9)^5a^5b+15(-10)^2(9)^4a^4b^2+20(9)^3(-10)^3a^3b^3+15(9)^2(-10)^4a^2b^4+6(9)(-10)^5ab^5+(-10)^6b^6


=531441a^6-3542940a^5b+9841500a^4b^2-14580000a^3b^3+12150000a^2b^4-5400000ab^5+1000000b^6

User Ade Miller
by
7.3k points