Answer:
The velocity of wind is 34.88 miles per hour
Explanation:
Given as :
The velocity of plane = 190 miles per hour
Let The velocity of wind = w miles per hour
The distance cover by plane = 500 miles
The time taken to cover 500 miles with the wind = t hours
The time taken to cover 500 miles against the wind = ( 1 + t ) hours
Now , Speed =
![(\terxtrm Distance)/(\textrm Time)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o65c7eh8uoh7eflftcz94s18p1xof5u7pq.png)
Now, With the wind
190 + w =
![(\terxtrm 500)/(\textrm t)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7cnmdsofmnbl2k0d7naiswax5aetphh9ka.png)
or, t =
![(\terxtrm 500)/(\textrm 190 + w)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5z6adwip4lwzszxv3gu38u989pxi24d4w8.png)
And Against the wind
190 - w =
![(\terxtrm 500)/(\textrm ( t + 1 ))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e1mlmv9o9lymbzo965e1kw0qs34a9hpa2y.png)
Solving the equation
I.e ( 190 - w ) ( t + 1 ) = 500
or, ( 190 - w ) (
+ 1 ) = 500
Or, ( 190 - w ) [ 500 + ( 190 + w ) ] = 500 ( 190 + w )
Or, 500 × 190 + 190 × ( 190 + w ) - 500 w - w × ( 190 + w ) = 500 × 190 + 500 w
or, 190 × ( 190 + w ) - 500 w - w × 190 - w² = 500 w
or, 190² + 190 w - 500 w - 190 w - w² = 500 w
or, - w² - 1000 w + 190² = 0
Or , w² + 1000 w - 36100 = 0
Solving this quadratic equation
w =
![\frac{-b\pm \sqrt{b^(2)-4* a* c}}{2* a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ttph2mdumuowkdsimnv93zdy1jko2kimki.png)
Or, w =
![\frac{-1000\pm \sqrt{1000^(2)-4* 1* (-36100)}}{2* 1}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/80uf71njvsrlju3epp0gu7sf8tiriha8ue.png)
Or, w =
![(-1000\pm √(1144400))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v09mpmfguarzxwi0xi3lcsdsjdvkjq1cg7.png)
∴ w =
,
![(-1000 - 1069.76)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k37wnu23qy4vukb434h3btd9dr0r9i8e74.png)
or, w = 34.88 mph , - 1034.88 mph
So, The wind velocity = w = 34.88 mph
Hence The velocity of wind is 34.88 miles per hour Answer