Answer:
a. 0.5307 sec
b. 0.4458 m
c. =
Step-by-step explanation:
Horizontal Motion
It describes the dynamics of an object thrown horizontally in free air. The initial horizontal velocity is maintained all the time since no horizontal forces are acting. The initial vertical velocity is zero at launch time, but it grows downwards powered by the acceleration of gravity.
The object hits the ground at a distance x from the point of launching, after having traveled a vertical distance
, taking a time t to complete the travel. The formulas who relate the different magnitudes are
![v_x=v_o](https://img.qammunity.org/2020/formulas/physics/middle-school/osaxdl73xikt6fckgdz289udbb35rjgjtk.png)
The horizontal velocity
is the same regardless of the elapsed time
![v_y=gt](https://img.qammunity.org/2020/formulas/physics/college/dszvknl1zebty1jg3pr83uu0y6039vuf4z.png)
![x=v_ot](https://img.qammunity.org/2020/formulas/physics/middle-school/7l3o5sljuwn9cxi8u7g54c544rq16uk5fn.png)
![\displaystyle y=y_o-(gt^2)/(2)](https://img.qammunity.org/2020/formulas/physics/middle-school/uayhwbhk9sf1bl5eop5zj5zavevdrddbpj.png)
The plate of apple pie left the counter at a speed
![v_o=0.84\ m/s](https://img.qammunity.org/2020/formulas/physics/middle-school/jnkcnm1w7mjzl9lnhophgeselmxqxfwh66.png)
The counter is
high.
a.
Knowing that
![y_o=1.38\ m](https://img.qammunity.org/2020/formulas/physics/middle-school/ysu6f7qsajux93ghx6ibaf8myyu3isosv2.png)
We use this formula to compute t
![\displaystyle y=y_o-(gt^2)/(2)](https://img.qammunity.org/2020/formulas/physics/middle-school/uayhwbhk9sf1bl5eop5zj5zavevdrddbpj.png)
At the moment when the plate hits the floor y=0
![\displaystyle 0=y_o-(gt^2)/(2)](https://img.qammunity.org/2020/formulas/physics/middle-school/q8ow6e5ogz38m0avvza5disa8slklwppg2.png)
![\displaystyle y_o=(gt^2)/(2)](https://img.qammunity.org/2020/formulas/physics/middle-school/7qmgx633wn6z7cwtlwkck7rnqbr208tmdv.png)
Solving for t
![\displaystyle t=\sqrt{(2y_o)/(g)}](https://img.qammunity.org/2020/formulas/physics/middle-school/4jpao39gy2p5n9gv7zi5cy7v5tg6gaz37p.png)
![\displaystyle t=\sqrt{(2(1.38))/(9.8)}](https://img.qammunity.org/2020/formulas/physics/middle-school/k07g502hxoimhgwaxu9ti8lu702uxu57es.png)
![t=0.5307\ sec](https://img.qammunity.org/2020/formulas/physics/middle-school/vk2ylx3kwo7ra0qif9pkbchcbhyf80s3tl.png)
b.
![x=(0.84)(0.5307)](https://img.qammunity.org/2020/formulas/physics/middle-school/zo9pjbfl4np4nwe66ir8o76ssuegyvhmct.png)
![x=0.4458\ m](https://img.qammunity.org/2020/formulas/physics/middle-school/utyhptoub4189crstx9kgp5xldxe3py2rr.png)
c.
![v_x=0.84\ m/s](https://img.qammunity.org/2020/formulas/physics/middle-school/7lgabq6nx8ljvhkqtc8kl7frdg8o7bgvb0.png)
![v_y=(9.8)(0.5307)](https://img.qammunity.org/2020/formulas/physics/middle-school/eafi1d56qaaxkddci7szfjnb8dquvyi4hi.png)
![v_y=5.2\ m/s](https://img.qammunity.org/2020/formulas/physics/middle-school/95m16vh48olazghl9fwrurxeu48j9pl35c.png)