120k views
5 votes
Solve sin θ +1 = cos 2 θ on the interval 0 ≤ θ <2π

1 Answer

3 votes

Answer:


\theta=0,\pi,(3\pi)/(2) on the interval 0 ≤ θ <2π

Explanation:

We have
\sin \theta+1=\cos^2\theta

We use the Pythagorean identity and substitute
cos^2\theta=1-sin^2\theta


\implies \sin \theta+1=1-\sin^2\theta


\implies \sin \theta+1=1-\sin^2\theta


\implies \sin^2\theta+\sin \theta=1-1


\implies \sin^2\theta+\sin \theta=0

Factor to get:


\implies \sin\theta(\sin \theta+1)=0


\implies \sin\theta=0\:or\:\sin \theta=-1


\theta=0,\pi,(3\pi)/(2)

User Jaromir Hamala
by
5.7k points