166k views
1 vote
Write the quadratic function in standard form.
f(x) = -x2 + 2x + 4
f(x) =

1 Answer

6 votes

Answer:


f(x)=-1(x-2)^2+8

Explanation:

Given:

The quadratic function is given as:


f(x)=-x^2+2x+4

The standard form of a quadratic function is given as:


f(x)=a(x-h)^2+k, where, 'a', 'h' and 'k' are real numbers.

Now, in order to convert the given function to standard form, we use completing by square method.


-x^2+2x=-(x^2-2x)=-[(x-2)^2-2^2]=-[(x-2)^2-4]=-(x-2)^2+4

Now,
f(x)=-x^2+2x+4 can be rewritten as:


f(x)=-(x-2)^2+4+4\\f(x)=-1(x-2)^2+8

Therefore, the standard form of the function is:


f(x)=-1(x-2)^2+8

User Mykola Denysyuk
by
5.8k points