Answer:
The possible values of n for n ≤ +4 = (-∞,+4]
The possible values of n for n ≤ -4 = (-∞,-4]
Explanation:
Here, the given inequality is:
![3n^2 - 4 \leq 44](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h1fcul6gbhyheacawnfcb9zn0m7715oksy.png)
Firstly, let us solve the given inequality for the desirable value of n.
![3n^2 - 4 \leq 44](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h1fcul6gbhyheacawnfcb9zn0m7715oksy.png)
Adding 4 on both sides, we get:
![3n^2 - 4 + 4 \leq 44 + 4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z3qfytgfqn47312re4sweyneoly1rx6ycp.png)
![3n^2 \leq 48](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t7h3r9jae0kgv9mmguifeef8esrdr988cb.png)
or,
![n^2 \leq (48)/(3)\implies n^2 \leq 16\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lkg382z7oq4flizf6f6i4uy088yy9lr8dn.png)
⇒ n ≤ +4 or n ≤ -4
So, the possible values of n for n ≤ +4 = (-∞,+4]
And, the possible values of n for n ≤ -4 = (-∞,-4]
So, we can pick any of the integer values from the both defined sets.