34.5k views
4 votes
Sinxcos y = 1/2(sin(x + y) + cos(x - y)) TRUE OR FALSE

User Izion
by
8.5k points

1 Answer

3 votes

Answer:

False

sin x cos y
\\eq(\bf 1)/(\bf 2) (sin (x + y) + cos (x - y))

Explanation:

Given
\sin x \cos y = 1/2(\sin(x + y) + \cos(x - y))\hfill (1)

To verify that the equality is true or false


\sin (x+y)=\sin x \cos y+ \cos x \sin y and


\cos (x-y)=\cos x \cos y+ \sin x \sin y

Now adding the above equations we get


\sin (x+y)+ \cos (x-y)= \sin x \cos y+ \cos x \sin y+ \cos x \cos y+ \sin x \sin y\hfill (2)

Comparing the equations (1) and (2) we get


\sin x \cos y \\eq \frac {1}{2} \(sin (x + y) + \cos (x - y))

Therefore the given equality is not true (ie, false)

User DaveVentura
by
8.0k points