Answer: a= 147.46atm
bi = 0.124Lmol1-1, bii =0.122Lmol^-1
Step-by-step explanation:
Given
m, mass of the gas = 94.2kg = 94200g
T, Temperature = 500k
Volume of gas = 1m^3 = 1000L
Constant a for nitrogen = 1.352dm^6atm*mol^-2
= 1.352L^2atm*mol^-2
Constant b for nitrogen= 0.0387dm^3atm*mol^-1
= 0.0387Lmol^-1
Molar mass of nitrogen, M, = 28g
Number of moles, n, of nitrogen= mass/ molar mass
= 94200÷ 28
= 3364.28 moles
The Vanderwall equation, making pressure the subject of the formula
p= [(n*R*T/V - n*b)] - [(a - n^2)/V^2]
p = [(3364.28*0.0821*500)÷(1000-3364.28*0.0387)]-
[(1.352 -3364.28^2)÷ 1000^2]
Therefore p= 147.46 atm
Using ideal gas equation
P*V = n*R*T
Molar volume Vm = V/n = R*T/P
Given pressure 200 bar = 197.385atm
Temperature T 25°c = 298.15K
Vm = (0.0821 x 298.15)/ 197.385
Molar volume= 0.124Lmol^-1
If not an ideal gas,
p= [(R*T)/(Vm - b)] - [a/V^2m]
197.385= [(0.0821x298.15)/(Vm-0.0319)] - [1.364/V^2m]
Vm = 0.122Lmol^-1