Answer
given,
mass of the skydiver = 75 Kg
mass of pet = 20 g
to find the terminal speed of both the sky diver and the mouse
Using terminal speed formula
![v = \sqrt{(4mg)/(\rho\ A)}](https://img.qammunity.org/2020/formulas/physics/high-school/e74wv73iesktxahuj5jkr1brjvhjkqqf3v.png)
ρ is the density of the air
A is the area of mouse and skydiver
![v = \sqrt{(4* 75 \9.8)/(1.23* A)}](https://img.qammunity.org/2020/formulas/physics/high-school/co08ue9j8vin01bjadpwmbzde8nnwjgbiv.png)
Assuming area of Skydiver = 0.72 m²
and Area of mouse will be equal to = 0.0021 m²
now,
![v_(skydiver) = \sqrt{(4* 75* 9.8)/(1.2* 0.72)}](https://img.qammunity.org/2020/formulas/physics/high-school/7lbfhuqykvch6yrnifcnbl6oag4p05l3jv.png)
![v_(skydiver) =√(3402.777)](https://img.qammunity.org/2020/formulas/physics/high-school/4ukywzuyqfhynm8x7nidxc5r597cnmxqhh.png)
![v_(skydiver) =58.33\ m/s](https://img.qammunity.org/2020/formulas/physics/high-school/dvv8ejkyuiqbkwhkzgdt5qzk1dkov1eofk.png)
![v_(mouse) = \sqrt{(4* 0.02* 9.8)/(1.2* 0.0021)}](https://img.qammunity.org/2020/formulas/physics/high-school/87lx78tzngazd0tilylaw3o2a3nnlauw4l.png)
![v_(mouse) =√(311.11)](https://img.qammunity.org/2020/formulas/physics/high-school/535d362ktzm5m36y6x075inhfrgmakzi5i.png)
![v_(mouse) =17.63\ m/s](https://img.qammunity.org/2020/formulas/physics/high-school/7kd5hxitrynj27rsnbedhd8l3lz8w0uib2.png)