Answer:
![4x^2 + 28x - 52 \leq 0](https://img.qammunity.org/2020/formulas/mathematics/college/hxisuafless4xv7x7m6oltq55l5ov0xw2p.png)
Where, x ≥ 0
Explanation:
Given,
The rectangular picture has,
Length = 6 inches,
Width = 8 inches,
Suppose x be the width( in inch ) of the piece of wooden,
After joining the piece,
New length = 6 + 2x ,
New width = 8 + 2x
So, the area of the final figure,
![V=length* width = (6+2x)(8+2x)](https://img.qammunity.org/2020/formulas/mathematics/college/5gq54td5d9eqq0ahvmqoz2rqkvnxgtu8kz.png)
According to the question,
V ≤ 100 inch²
![\implies (6+2x)(8+2x)\leq 100](https://img.qammunity.org/2020/formulas/mathematics/college/pgkcw1amivsi2sswhozcen5qgmqjqjteff.png)
![48 + 12x + 16x + 4x^2\leq 100](https://img.qammunity.org/2020/formulas/mathematics/college/v4ux7ngyyk9q5ifet9plfc25915fs0tio7.png)
![4x^2 + 28x + 48 - 100\leq 0](https://img.qammunity.org/2020/formulas/mathematics/college/7e7k5fy2a3zzco89cwjsz3iyu7bh2h0wv2.png)
![4x^2 + 28x - 52 \leq 0](https://img.qammunity.org/2020/formulas/mathematics/college/hxisuafless4xv7x7m6oltq55l5ov0xw2p.png)
But, width can not be negative,
i.e. x ≥ 0