Answer:
a)
![y=-0.317 x +46.02](https://img.qammunity.org/2020/formulas/mathematics/college/uqljitzidnfnif2unn95d1l6f2bve7833w.png)
b) Figure attached
c)
![S^2=\hat \sigma^2=MSE=(190.33)/(10)=19.03](https://img.qammunity.org/2020/formulas/mathematics/college/aqijkxhsz8twiyr95wlj0338etxcfjec0b.png)
Explanation:
We assume that th data is this one:
x: 30, 30, 30, 50, 50, 50, 70,70, 70,90,90,90
y: 38, 43, 29, 32, 26, 33, 19, 27, 23, 14, 19, 21.
a) Find the least-squares line appropriate for this data.
For this case we need to calculate the slope with the following formula:
![m=(S_(xy))/(S_(xx))](https://img.qammunity.org/2020/formulas/mathematics/college/tjghut603epa69decp4g9ch994bvyb02l4.png)
Where:
![S_(xy)=\sum_(i=1)^n x_i y_i -((\sum_(i=1)^n x_i)(\sum_(i=1)^n y_i))/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/g9p58bi1gu8kqdvqtra6nii0b9ysl0qynf.png)
![S_(xx)=\sum_(i=1)^n x^2_i -((\sum_(i=1)^n x_i)^2)/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/1bk2rtbfhsj7ddeoal33alonqh3t6bfre8.png)
So we can find the sums like this:
![\sum_(i=1)^n x_i = 30+30+30+50+50+50+70+70+70+90+90+90=720](https://img.qammunity.org/2020/formulas/mathematics/college/k8vrnqo7jrws3avttfmtcwtqz9kte62rmk.png)
![\sum_(i=1)^n y_i =38+43+29+32+26+33+19+27+23+14+19+21=324](https://img.qammunity.org/2020/formulas/mathematics/college/9um0lr5nekbyb727sm4ntp8imkfxt943px.png)
![\sum_(i=1)^n x^2_i =30^2+30^2+30^2+50^2+50^2+50^2+70^2+70^2+70^2+90^2+90^2+90^2=49200](https://img.qammunity.org/2020/formulas/mathematics/college/3a774xquxel0w2kmhfk53cw6np9zgmewp1.png)
![\sum_(i=1)^n y^2_i =38^2+43^2+29^2+32^2+26^2+33^2+19^2+27^2+23^2+14^2+19^2+21^2=9540](https://img.qammunity.org/2020/formulas/mathematics/college/kvu0l5xo0rlp5fqhyifwsijggo4aykwc1y.png)
![\sum_(i=1)^n x_i y_i =30*38+30*43+30*29+50*32+50*26+50*33+70*19+70*27+70*23+90*14+90*19+90*21=17540](https://img.qammunity.org/2020/formulas/mathematics/college/7wmdm5ipb2yjxy34pzm7qg03g7cnv6v7mo.png)
With these we can find the sums:
![S_(xx)=\sum_(i=1)^n x^2_i -((\sum_(i=1)^n x_i)^2)/(n)=49200-(720^2)/(12)=6000](https://img.qammunity.org/2020/formulas/mathematics/college/b3kg990y1gwv4rryl27a382ixxj1p3yz53.png)
![S_(xy)=\sum_(i=1)^n x_i y_i -\frac{(\sum_(i=1)^n x_i)(\sum_(i=1)^n y_i)}=17540-(720*324)/(12){12}=-1900](https://img.qammunity.org/2020/formulas/mathematics/college/lpxpmfln9ye41rtf4xybajg1me5umuaqt8.png)
And the slope would be:
![m=-(1900)/(6000)=-0.317](https://img.qammunity.org/2020/formulas/mathematics/college/ppojeg0vggex08zmntqn4kmlzfmr1vlne1.png)
Nowe we can find the means for x and y like this:
![\bar x= (\sum x_i)/(n)=(720)/(12)=60](https://img.qammunity.org/2020/formulas/mathematics/college/oeja43vtdktnjygcv0e5sr8ecwepi2emv0.png)
![\bar y= (\sum y_i)/(n)=(324)/(12)=27](https://img.qammunity.org/2020/formulas/mathematics/college/hemtgwvb0gtwep9u005sw4s1dyhqrokf53.png)
And we can find the intercept using this:
![b=\bar y -m \bar x=27-(-0.317*60)=46.02](https://img.qammunity.org/2020/formulas/mathematics/college/h845eh0u4n5yd31ffgakfcsrod7k29ph58.png)
So the line would be given by:
![y=-0.317 x +46.02](https://img.qammunity.org/2020/formulas/mathematics/college/uqljitzidnfnif2unn95d1l6f2bve7833w.png)
b) Plot the points and graph the line as a check on your calculations.
For this case we can use excel and we got the figure attached as the result.
c) Calculate S^2
In oder to calculate S^2 we need to calculate the MSE, or the mean square error. And is given by this formula:
![MSE=(SSE)/(df_(E))](https://img.qammunity.org/2020/formulas/mathematics/college/yxz0zak961fjsyrbstwzps9hntr74ulikl.png)
The degred of freedom for the error are given by:
![df_(E)=n-2=12-2=10](https://img.qammunity.org/2020/formulas/mathematics/college/hxhcrcybp80gz84frz7kg0gppn4idm9g3e.png)
We can calculate:
![S_(y)=\sum_(i=1)^n y^2_i -((\sum_(i=1)^n y_i)^2)/(n)=9540-(324^2)/(12)=792](https://img.qammunity.org/2020/formulas/mathematics/college/qhnjvd3dgz0xo0ep69zhekk96svi2pv5bn.png)
And now we can calculate the sum of squares for the regression given by:
![SSR=(S^2_(xy))/(S_(xx))=((-1900)^2)/(6000)=601.67](https://img.qammunity.org/2020/formulas/mathematics/college/2si5sazfg3mh6l44piw6lwirtvj1v152he.png)
We have that SST= SSR+SSE, and then SSE=SST-SSR= 792-601.67=190.33[/tex]
So then :
![S^2=\hat \sigma^2=MSE=(190.33)/(10)=19.03](https://img.qammunity.org/2020/formulas/mathematics/college/aqijkxhsz8twiyr95wlj0338etxcfjec0b.png)