231k views
1 vote
If sin2 x - 2sinx = 2, then sinx = _____.

User Peterwang
by
5.3k points

2 Answers

5 votes

Answer:

sinx = -1

Explanation:

This question is from trigonometry.

Given ,

sin2x - 2sinx = 2 ----------(1)

But sin2x =
2sinx * cosx
----------(2)

Substituting (2) in (1)


2sinx * cosx -2sinx = 2

2sinx(cosx - 1) = 2

Dividing LHS and RHS by 2 ,

sinx(cosx-1) = 1 ------------(3)

-1 ≤ sinx , cosx ≤ 1

(3) is possible only when

sinx = -1 and cosx = 0

This happens when sinx =270°

User Ryan Erickson
by
5.7k points
2 votes

Answer:


Sin (x)  =\frac { 1} {  Cos (x)  - 1}

Explanation:

Here, given :

sin 2 x - 2 sin x = 2 .... (1)

Now, by TRIGONOMETRIC IDENTITY:

Sin 2Ф = 2 SinФ CosФ

sin 2 x = 2 sin x cos x

Putting back the value in (1), we get:

sin 2 x - 2 sin x = 2 ⇒ (2 sin x cos x) - 2 sin x = 2

or, 2( sin x cos x - sin x) = 2

or, sin x cos x - sin x = 1

or, (sin x) ( cosx - 1) = 1

⇒ Sin x = 1 / ( Cos x - 1)

Hence,
Sin (x)  =\frac { 1} {  Cos (x)  - 1}

User Bqsj Sjbq
by
5.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.