50.9k views
1 vote
Identify a quadratic function that fits the points (−1, 8),(2, −1), and (0, 3).

Identify a quadratic function that fits the points (−1, 8),(2, −1), and (0, 3).-example-1
User Una
by
8.3k points

1 Answer

5 votes

Answer:

The quadratic equation is y =
x^(2) - 4x +3

Explanation:

Let the quadratic equation be y = f(x) =
ax^(2) +bx+c

The graph of this quadratic equation should pass through all the given points.

The given points are (-1,8),(2,-1) and (0,3).

y =
ax^(2) +bx+c

We have to substitute the 3 points in the general equation and solve to find the values of a,b and c.

Substitute (-1,8) ,

8 =
a(-1)^(2) + b(-1) + c

8=a - b + c -------------------------(1)

Substitute (2,-1) ,

-1 =
a(2)^(2) + b(2) +c

-1 = 4a + 2b + c --------------------------(2)

Substitute (0,3) ,

3 =
a(0)^(2) + b(0) +c

3 = c

c = 3 --------------------------(3)

Substitute (3) in (1) and (2) ,

8 = a - b + c

8 = a - b + 3

a - b = 5

a = b + 5 --------------------------(4)

4a + 2b + c = -1

4a + 2b + 3 = -1

4a + 2b = -4

2a + b = -2 --------------------------(5)

Substitute (4) in (5) ,

2a + b = -2

2\times (b + 5) + b = -2

2b +10 +b = -2

b = -4

Substituting value of b in (4) ,

a = 1

Hence the quadratic equation is y =
x^(2) - 4x +3

No related questions found