Answer:
3.67 rad/s
Step-by-step explanation:
L = Length of meter stick = 1 m
r = Distance at which the bullet will hit the stick =
![(L)/(4)=(1)/(4)](https://img.qammunity.org/2020/formulas/physics/college/awnaxavp971yfi1cu7p996nq4kldfefzpg.png)
m = Mass of bullet = 3 g
M = Mass of stick = 270 g
= Velocity of bullet = 250 m/s
= Velocity of bullet leaving = 140 m/s
Initial angular momentum
![L_i=mv_1r](https://img.qammunity.org/2020/formulas/physics/college/uhmyz6au41etct370j5djtumo7fehxtsvo.png)
Final angular momentum of the system
![L_f=(1)/(12)ML^2\omega+mv_2r](https://img.qammunity.org/2020/formulas/physics/college/idspdgddtn3g2640i7vpkbepm06pufe1iw.png)
Since, angular momentum is conserved we have
![mv_1r=(1)/(12)ML^2\omega+mv_2r\\\Rightarrow \omega=(12(mv_1r-mv_2r))/(ML^2)\\\Rightarrow \omega=(12(0.003* 250* (1)/(4)-0.003* 140* (1)/(4)))/(0.27* 1^2)\\\Rightarrow \omega=3.67\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/ck5qat59zc74s9obuyibdxvgnnrl5wtgfp.png)
The angular speed is the stick spinning after the collision is 3.67 rad/s