Answer:
8.89288275 m/s
Step-by-step explanation:
F = Tension = 54 N
= Linear density of string = 5.2 g/m
A = Amplitude = 2.5 cm
Wave velocity is given by
![v=\sqrt{(F)/(\mu)}\\\Rightarrow v=\sqrt{(54)/(5.2* 10^(-3))}\\\Rightarrow v=101.90493\ m/s](https://img.qammunity.org/2020/formulas/physics/college/6r6vjeeh49ckp1ia7qm78muwruk2em76j8.png)
Frequency is given by
![f=(v)/(\lambda)\\\Rightarrow f=(101.90493)/(1.8)\\\Rightarrow f=56.61385\ Hz](https://img.qammunity.org/2020/formulas/physics/college/x9it4hhh7fwikmbz1ucc5nua9ue3f0bjbm.png)
Angular frequency is given by
![\omega=2\pi f\\\Rightarrow \omega=2\pi 56.61385\\\Rightarrow \omega=355.71531\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/1yujwnd6u7wpf0vrxx4mnhpm0cg9am5smb.png)
Maximum velocity of a particle is given by
![v_m=A\omega\\\Rightarrow v_m=0.025* 355.71531\\\Rightarrow v_m=8.89288275\ m/s](https://img.qammunity.org/2020/formulas/physics/college/gidfrl8zsmhew6k7bj6wgbcjyq7tdyfmqg.png)
The maximum velocity of a particle on the string is 8.89288275 m/s