Answer:
The radius of orbit=
![2.49* 10^7 m](https://img.qammunity.org/2020/formulas/physics/college/nhthaxcoss406uv83kyowun1vy69joj4v2.png)
Step-by-step explanation:
We are given that
Orbital speed=
m/s
We have to find the radius of orbit of spacecraft.
We know that
Gravitational constant=
![6.67* 10^(-11)m^3/kgs^2](https://img.qammunity.org/2020/formulas/physics/college/pkey2n8yp6jlkn5vstur4om2m3g6s8t9e6.png)
Mass of earth=
![5.972* 10^(24) kg](https://img.qammunity.org/2020/formulas/physics/college/6595wprfkjnbrdqowpnibnfhc5387usbkn.png)
Orbital speed=
![\sqrt{(GM)/(r)}](https://img.qammunity.org/2020/formulas/physics/college/eyxs9j0j152ud5tf0or7p8j3qwktz22g1i.png)
Where G= Gravitational constant
M=Mass of earth
r=Radius of orbit
Substitute the values in the formula
![4* 10^3=\sqrt{(6.67* 10^(-11)* 5.972* 10^(24))/(r)](https://img.qammunity.org/2020/formulas/physics/college/wwep1qscvltflne8jlvg5n5yyo95mat5fw.png)
Squaring on both sides
![16* 10^6=(6.67* 10^(-11)* 5.972* 10^(24))/(r)](https://img.qammunity.org/2020/formulas/physics/college/s7tudkop6lk8crcquk5eq26kyqmvljlak1.png)
![r=(6.67* 10^(-11)* 5.972* 10^(24))/(16* 10^6)](https://img.qammunity.org/2020/formulas/physics/college/gs128pdf4rrhdged0yglr5l02deu9tof8i.png)
![r=2.49* 10^7 m](https://img.qammunity.org/2020/formulas/physics/college/rucszafhkvhweur1ztgo8ltcjgpe0nlygy.png)
Hence, the radius of orbit=
![2.49* 10^7 m](https://img.qammunity.org/2020/formulas/physics/college/nhthaxcoss406uv83kyowun1vy69joj4v2.png)