Answer: B. 1.679
Explanation:
The standard deviation for the difference between two mean is given by :-
![SD_{\overline{x}_1-\overline{x}_2}=\sqrt{(s_1^2)/(n_1)+(s_2^2)/(n_2)}](https://img.qammunity.org/2020/formulas/mathematics/college/84o2wb0q72p6dewwve4wxveu4qzn3szcb4.png)
, where
= sample size from population 1.
= sample size from population 2.
= sample mean differnce.
= sample standard deviations .
Given :
![{\overline{x}_1=12,\ \ \overline{x}_2=9](https://img.qammunity.org/2020/formulas/mathematics/college/w950r6so2pfwiledo9grdbh8to7e82lifr.png)
![s_1=5,\ \ s_2=3](https://img.qammunity.org/2020/formulas/mathematics/college/s2vz4aiomqf43ngacludq27h0ngxhdkxki.png)
![n_1=13,\ n_2=10](https://img.qammunity.org/2020/formulas/mathematics/college/jvhuvzn17tqm55oispwfmmu24qfrqe50ws.png)
Then, the standard deviation of the difference between the two means will be :
![SD_{\overline{x}_1-\overline{x}_2}=\sqrt{((5)^2)/(13)+((3)^2)/(10)}](https://img.qammunity.org/2020/formulas/mathematics/college/h5bcpc44aujywhm04zm5jckgnrsf4977c2.png)
![=\sqrt{(25)/(13)+(9)/(10)}\\\\=\sqrt{(367)/(130)}=1.68020145312\approx1.680](https://img.qammunity.org/2020/formulas/mathematics/college/1nb984th4jaz2a5hm4ac2uj75u1wyoxt8r.png)
The nearest option : B. 1.679
Hence, the standard deviation of the difference between the two means = 1.679