Answer:
and
![\sigma= 1.5](https://img.qammunity.org/2020/formulas/mathematics/college/pkqmkr0x2sihf93o9v4kdgqu4u2gynjkli.png)
Explanation:
Let
= mean and
= standard deviation.
Given : If a set of data are normally distributed with at least 68% of scores falling between scores 16.5 and 19.5.
If these values mark the first standard deviation from the mean, then
![\mu -\sigma=16.5----(1)\\\mu +\sigma=19.5-----(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xepzt77aicqkc89pu3p2vg1hzg0ys8gcxd.png)
Adding (1) and (2) ,we get
![2\mu=36\\\Rightarrow\ \mu=18](https://img.qammunity.org/2020/formulas/mathematics/high-school/f73kyt8whk3v413lnzrz2ded2sikc6ygle.png)
Subtract (1) from (2) , we get
![2\sigma= 3\\\Rightarrow\ \sigma= 1.5](https://img.qammunity.org/2020/formulas/mathematics/high-school/jtlwep2csf9bodyji1al5zxwbkhs2nq0tm.png)
Hence, the values of the mean and standard deviation in this normal distribution are :
and
![\sigma= 1.5](https://img.qammunity.org/2020/formulas/mathematics/college/pkqmkr0x2sihf93o9v4kdgqu4u2gynjkli.png)