Answer:
![1.68085* 10^(-6)\ J](https://img.qammunity.org/2020/formulas/physics/college/jdtst3sq80x8fggdnpndyginlejzek54in.png)
0.00739 A
Step-by-step explanation:
Q = Maximum charge on the capacitor =
![3.56\ \mu C](https://img.qammunity.org/2020/formulas/physics/college/ns7u1sz9wyjmrbyln84lehv3lhwk4ec532.png)
C = Inductor capacitance =
![3.77\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/ipd9xlkbrhkjl6o0gvl61p46rl4gkt03ia.png)
L = Inductance = 61.5 mH
I = Current
Maximum energy in capacitor is given by
![E=(Q^2)/(2C)\\\Rightarrow E=((3.56* 10^(-6))^2)/(2* 3.77* 10^(-6))\\\Rightarrow E=1.68085* 10^(-6)\ J](https://img.qammunity.org/2020/formulas/physics/college/oieg7x83tk3dd4ypp321gg66oj65v3z8wk.png)
Total energy in the circuit is
![1.68085* 10^(-6)\ J](https://img.qammunity.org/2020/formulas/physics/college/jdtst3sq80x8fggdnpndyginlejzek54in.png)
Energy is also given by
![E=(LI^2)/(2)\\\Rightarrow I=\sqrt{(2E)/(L)}\\\Rightarrow I=\sqrt{(2* 1.68085* 10^(-6))/(61.5* 10^(-3))}\\\Rightarrow I=0.00739\ A](https://img.qammunity.org/2020/formulas/physics/college/c0s5shsu2xgbgfwcok3ps3q732thvel6kz.png)
The maximum current in the circuit is 0.00739 A