35.1k views
0 votes
Consider the reaction 4 HCl(g) + O2(g) =2 H2O(g) + 2 Cl2(g) Using the standard thermodynamic data in the tables linked above, calculate the equilibrium constant for this reaction at 298.15K. ANSWER:_______

delta G (kJ/mol)

HCL=-95.3

O2=0

H2O=-228.6

Cl2=0

User Masae
by
6.4k points

1 Answer

4 votes

Answer:

The equilibrium constant for this reaction at 298.15 K is
2.067* 10^(13).

Step-by-step explanation:

The equation used to calculate Gibbs free change is of a reaction is:


\Delta G^o_(rxn)=\sum [n* \Delta G^o_f(product)]-\sum [n* \Delta G^o_f(reactant)]

The equation for the enthalpy change of the above reaction is:


\Delta G^o_(rxn)=(2* \Delta G^o_f_((H_2O(g)))+2* G^o_f_((Cl_2(g))))-(4* \Delta G^o_f_((HCl(g)))+1* G^o_f_((O_2(g))))

We are given:


\Delta G^o_f_((HCl(g)))=-95.3 kJ/mol\\\Delta G^o_f_((H_2O(g)))=228.6 kJ/mol


\Delta G^o_f_((O_2(g)))=\Delta G^o_f_((Cl_2(g)))=0 (pure element)

Putting values in above equation, we get:


\Delta G^o_(rxn)=(2* (-228.6 kJ/mol)+2* 0 kJ/mol)-(4* -95.3 kJ/mol+1* 0 kJ/mol)=-76 kJ/mol

To calculate the
K_1 (at 25°C) for given value of Gibbs free energy, we use the relation:


\Delta G^o=-RT\ln K_1

where,


\Delta G^o = Gibbs free energy = -76 kJ/mol = -76000 J/mol

(Conversion factor: 1kJ = 1000J)

R = Gas constant =
8.314J/K mol

T = temperature = 298.15 K[/tex]


K_1 = equilibrium constant at 25°C = ?


-76000 J/mol=-8.314J/K mol* 298.145 K\ln K_1


\ln K_1=(-76000 J/mol)/(-8.314J/K mol* 298.15 K)


K_1=2.067* 10^(13)

The equilibrium constant for this reaction at 298.15 K is
2.067* 10^(13).

User Jono
by
6.4k points