181k views
3 votes
Express the following sums using sigma notation.

a. 9 plus 10 plus 11 plus 12 plus 13
b. 2 plus 4 plus 6 plus 8 plus 10 plus 12
c. 1 Superscript 6 Baseline plus 2 Superscript 6 Baseline plus 3 Superscript 6 Baseline plus 4 Superscript 6
d. one fifth plus one sixth plus one seventh plus one eighth

User Koja
by
5.5k points

2 Answers

4 votes

The answer is:

(a) \sum_{n=9}^{13}n.

(b) \sum_{n=1}^{6}2n.

(c) \sum_{n=1}^{4}n^6.

(d) \sum_{n=5}^{8}\dfrac{1}{n}.

User Samuel Meddows
by
6.0k points
1 vote

Answer: The given sums in sigma notation are

(a)
\sum_(n=9)^(13)n.

(b)
\sum_(n=1)^(6)2n.

(c)
\sum_(n=1)^(4)n^6.

(d)
\sum_(n=5)^(8)(1)/(n).

Step-by-step explanation: We are given to express the following sums using sigma notation.

(a) 9 plus 10 plus 11 plus 12 plus 13.

Here, sum is


S=9+10+11+12+13.

In sigma notation, the given sum can be written as follows :


S=\sum_(n=9)^(13)n.

(b) 2 plus 4 plus 6 plus 8 plus 10 plus 12.

Here, sum is


S=2+4+6+8+10+12.

In sigma notation, the given sum can be written as follows :


S=\sum_(n=1)^(6)2n.

(c) 1 Superscript 6 Baseline plus 2 Superscript 6 Baseline plus 3 Superscript 6 Baseline plus 4 Superscript 6.

Here, sum is


S=1^6+2^6+3^6+4^6.

In sigma notation, the given sum can be written as follows :


S=\sum_(n=1)^(4)n^6.

(d) one fifth plus one sixth plus one seventh plus one eighth.

Here, sum is


S=(1)/(5)+(1)/(6)+(1)/(7)+(1)/(8).

In sigma notation, the given sum can be written as follows :


S=\sum_(n=5)^(8)(1)/(n).

Thus, the given sums in sigma notation are

(a)
\sum_(n=9)^(13)n.

(b)
\sum_(n=1)^(6)2n.

(c)
\sum_(n=1)^(4)n^6.

(d)
\sum_(n=5)^(8)(1)/(n).

User Tkhuynh
by
5.5k points