163k views
0 votes
For f(x) = 3x+1 and g(x) = x2 - 6, find (f - g)(x).

O A. 3x² - 17
O B. x2 – 3x-7
O C. -x2+3x+7
O D. - x2 + 3x - 5

1 Answer

7 votes

Question:

For f(x) = 3x+1 and g(x) = x^2 - 6, find (f - g)(x)

O A. 3x² - 17

O B. x^2 – 3x-7

O C. -x^2+3x+7

O D. - x^2 + 3x - 5

Answer:

Option C

For f(x) = 3x+1 and g(x) = x^2 - 6 then the value of
(f - g)(x) = - x^2 + 3x + 7

Solution:

Given that,


f(x) = 3x + 1


g(x) = x^2 - 6

To find: (f - g)(x)

We know that,

(f – g)(x) = f (x) – g(x)

Let us substitute the given values of f(x) and g(x) to find (f – g)(x)


(f - g)(x) = 3x + 1 - (x^2 - 6)

On multiplying the negative sign with terms inside second bracket


(f - g)(x) = 3x + 1 - x^2 + 6


(f - g)(x) = 3x - x^2 + 7

On rearranging the terms we get,


(f - g)(x) = - x^2 + 3x + 7

Thus the value of (f - g)(x) is found out and option C is correct

User Chris Mukherjee
by
5.5k points