Answer: Mass of the planet, M= 8.53 x 10^8kg
Step-by-step explanation:
Given Radius = 2.0 x 106m
Period T = 7h 11m
Using the third law of kepler's equation which states that the square of the orbital period of any planet is proportional to the cube of the semi-major axis of its orbit.
This is represented by the equation
T^2 = ( 4π^2/GM) R^3
Where T is the period in seconds
T = (7h x 60m + 11m)(60 sec)
= 25860 sec
G represents the gravitational constant
= 6.6 x 10^-11 N.m^2/kg^2 and M is the mass of the planet
Making M the subject of the formula,
M = (4π^2/G)*R^3/T^2
M = (4π^2/ 6.6 x10^-11)*(2×106m)^3(25860s)^2
Therefore Mass of the planet, M= 8.53 x 10^8kg