Answer:
We reject the null hypothesis.
Explanation:
We are given the following information in the question:
Sample size, n = 71
Population variance is known.
Level of significance, α = 0.08
![z_{\text{stat}} = 1.56](https://img.qammunity.org/2020/formulas/mathematics/college/442hlarq67ijp4jo988lg9c9q2u8j3o2kr.png)
The null and alternate hypothesis are:
![H_(0): \mu = 20\\H_A: \mu > 20](https://img.qammunity.org/2020/formulas/mathematics/college/zxn7fyfwcsnjx9vserrlka1fv8u3wnkfrk.png)
We use one-tailed z test to perform this hypothesis.
Formula:
![z_(stat) = \displaystyle\frac{\bar{x} - \mu}{(\sigma)/(√(n)) } = 1.56](https://img.qammunity.org/2020/formulas/mathematics/college/nebb3o0jux0i6cbnfwnhhe87n975n1zrsy.png)
Now,
![z_(critical) \text{ at 0.08 level of significance } = 1.41](https://img.qammunity.org/2020/formulas/mathematics/college/oq8bs7v9g0a743enrp6p0atubc8pein2bq.png)
Since,
![z_(stat) > z_(critical)](https://img.qammunity.org/2020/formulas/mathematics/college/nu7u1mv35whclvfbsgzokio4ops79ga24x.png)
We fail to accept the null hypothesis and reject it and accept the alternate hypothesis.