Answer:
x = 11,09 ft
h = 8,85 ft
Explanation:
Box with square base and top
Let x b a side of the square
A₁ (area of base) A₁ = x²
area of the top is equal to area of base A₂ = x²
Cost of area A₁
C₁ = 15 * x²
Cost of area A₂
C₂ = 10 * x²
Area of the side of height h
A₃ = 2*π*x*h V = 1088 = x²*h h = 1088/x²
A₃ = 2*π*x* (1088)/x² A₃ = 6832,64/x
Cost of A₃
C₃ = 2,5*4 *6832,64/x C₃ = 68326,4/x
Total cost C
C(x) = 15x² + 10x² + 68326,4/x
Taking derivatives on both sides of the equation
C´(x) = 30 x + 20 x - 68326,4/x²
C´(x) = 50 x - 68326,4 /x² C´(x) = 0
50 x - 68326,4 /x² = 0
50x³ = 68326,4
x³ = 1366,53
x = 11,09 ft and the height h = 1088/x²
h = 8,85 ft