Answer: b. .8
Explanation:
We find F-test statistic for testing whether two population have equal variances.
As per given , we have
In population 1 .
Samples size :
![n_1=60](https://img.qammunity.org/2020/formulas/mathematics/college/82se3d8tgjm51huo8eep1c2cgolsar6hn7.png)
Sample variance :
![s^2_1=8](https://img.qammunity.org/2020/formulas/mathematics/college/gm1xa6coodycoeipre0n6hbbn6i5x5ml5w.png)
In population 2 .
Samples size :
![n_2=40](https://img.qammunity.org/2020/formulas/mathematics/college/3ejvkzlcat6lz1m45tpbfhv3t1lh5zhuam.png)
Sample variance :
![s^2_2=10](https://img.qammunity.org/2020/formulas/mathematics/college/xjxkw5aqxskfdbc3dwo5kbwukwc8jduv3y.png)
If we want to test whether the variances of the two populations are equal, then the test statistic will have a value of
![F=(s_1^2)/(s_2^2)](https://img.qammunity.org/2020/formulas/mathematics/college/6psaldvkhg80iulrprlpp63vsjrqlwa9kj.png)
![=(8)/(10)=0.8](https://img.qammunity.org/2020/formulas/mathematics/college/8gncdsg2gac8m0wumst0gd5fzi2uquqptl.png)
Hence, the value of test-statistic = 0.8
Thus , the correct answer = b. .8