Answer:
3980.89 ohms
Step-by-step explanation:
The capacitive reactance is expressed as;
![X_c = (1)/(2 \pi fC)](https://img.qammunity.org/2022/formulas/physics/college/d40ayxxhexb72797ysmkkk9tbx7nmw6gt6.png)
f is the frequency
C is the capacitance of the capacitor
Given
f = 60H
C = C1+C2 (parallel connection)
C = 15μF + 25μF
C = 40μF
C =
![40 * 10^(-6)F](https://img.qammunity.org/2022/formulas/physics/college/3nnmva4vwowddsgjns1rxy3cfrmhh2h9de.png)
Substitute into the formula:
![X_c = (1)/(2(3.14)*60*40*10^(-6))\\X_c = (1)/(0.0002512)\\X_c = 3,980.89](https://img.qammunity.org/2022/formulas/physics/college/1rv02bi732jfebs6p4r47r234ejsk607fp.png)
Hence the total capacitive reactance is 3980.89 ohms