214k views
0 votes
Surface integrals using a parametric description. evaluate the surface integral \int \int_{s} f(x,y,z)dS using a parametric description of the surface.

f(x,y,z)=x2+y2, where S is the hemisphere x2+y2+z2=36, for z>=0

User DragonFax
by
7.8k points

1 Answer

0 votes

You can parameterize
S using spherical coordinates by


\vec s(u,v)=\langle6\cos u\sin v,6\sin u\sin v,6\cos v\rangle

with
0\le u\le2\pi and
0\le v\le\frac\pi2.

Take the normal vector to
S to be


(\partial\vec s)/(\partial\vec v)*(\partial\vec s)/(\partial\vec u)=36\langle\cos u\sin^2v,\sin u\sin^2v,\cos v\sin v\rangle

(I use
\vec s_v*\vec s_u to avoid negative signs. The orientation of the normal vector doesn't matter for a scalar surface integral; you could just as easily use
\vec s_u*\vec s_v=-(\vec s_v*\vec s_u).)

Then


f(x,y,z)=f(6\cos u\sin v,6\sin u\sin v,6\cos v)=36\sin^2v

and the integral of
f over
S is


\displaystyle\iint_Sf(x,y,z)\,\mathrm dS=\int_0^(\pi/2)\int_0^(2\pi)36\sin^2v\left\|(\partial\vec s)/(\partial v)*(\partial\vec s)/(\partial u)\right\|\,\mathrm du\,\mathrm dv


=\displaystyle\int_0^(\pi/2)\int_0^(2\pi)(36\sin^2v)(36\sin v)\,\mathrm du\,\mathrm dv


=\displaystyle2592\pi\int_0^(\pi/2)\sin^3v\,\mathrm dv=\boxed{1728\pi}

User Derek Pollard
by
8.2k points