81.9k views
4 votes
Consider the following reaction:

CaCO3(s)→CaO(s)+CO2(g).
Estimate ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range.)

A. 285 K
ΔG∘ =____________
B.1025 K
ΔG∘=_______
C.1475 K
ΔG∘ =___________

1 Answer

0 votes

Answer:

A. ΔG° = 132.5 kJ

B. ΔG° = 13.69 kJ

C. ΔG° = -58.59 kJ

Step-by-step explanation:

Let's consider the following reaction.

CaCO₃(s) → CaO(s) + CO₂(g)

We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.

ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)

where,

n: moles

ΔH°f: standard enthalpy of formation

ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))

ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)

ΔH° = 178.3 kJ

We can calculate the standard entropy of the reaction (ΔS°) using the following expression.

ΔS° = ∑np . S°p - ∑nr . S°r

where,

S: standard entropy

ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))

ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)

ΔS° = 160.6 J/K. = 0.1606 kJ/K.

We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.

ΔG° = ΔH° - T.ΔS°

where,

T: absolute temperature

A. 285 K

ΔG° = ΔH° - T.ΔS°

ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ

B. 1025 K

ΔG° = ΔH° - T.ΔS°

ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ

C. 1475 K

ΔG° = ΔH° - T.ΔS°

ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ

User Morloch
by
7.5k points