2.71 m/s fast Hans is moving after the collision.
Step-by-step explanation:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
=
![=\mathrm{M}_(1) * \mathrm{V}_{\mathrm{J}}+\mathrm{M}_{\mathrm{H}} * \mathrm{V}_{\mathrm{H}}](https://img.qammunity.org/2020/formulas/physics/middle-school/bxl6dcb9ayim1x5dhs7w48asccxi9b5my1.png)
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
=
![=\mathrm{M}_{\mathrm{J}} * \mathrm{V}_{\mathrm{JA}}+\mathrm{M}_{\mathrm{H}} * \mathrm{V}_{\mathrm{HA}}](https://img.qammunity.org/2020/formulas/physics/middle-school/3zrqbgcax81s14cq34fcx1gx85kg47cg27.png)
= 120 × (-2.5) + 140 ×
![V_(HA)](https://img.qammunity.org/2020/formulas/physics/middle-school/78sl1eejz8tdt2b4ierua36ndujcbbqzfh.png)
= -300 + 140 ×
![V_(HA)](https://img.qammunity.org/2020/formulas/physics/middle-school/78sl1eejz8tdt2b4ierua36ndujcbbqzfh.png)
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 ×
![V_(HA)](https://img.qammunity.org/2020/formulas/physics/middle-school/78sl1eejz8tdt2b4ierua36ndujcbbqzfh.png)
80 + 300 = 140 ×
![V_(HA)](https://img.qammunity.org/2020/formulas/physics/middle-school/78sl1eejz8tdt2b4ierua36ndujcbbqzfh.png)
380 = 140 ×
![V_(HA)](https://img.qammunity.org/2020/formulas/physics/middle-school/78sl1eejz8tdt2b4ierua36ndujcbbqzfh.png)
380/140=
![V_(HA)](https://img.qammunity.org/2020/formulas/physics/middle-school/78sl1eejz8tdt2b4ierua36ndujcbbqzfh.png)
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.