3.1k views
5 votes
Sec theta - Csc theta / (csc theta)(sec theta)

Sec theta - Csc theta / (csc theta)(sec theta)-example-1

1 Answer

2 votes

Answer:

sin(x)-cos(x)

Explanation:


((1)/(cos(x)) - (1)/(sin(x))  )/((1)/(sin(x)) * (1)/(cos(x))  )

Simplify the denominator:


((1)/(cos(x)) - (1)/(sin(x))  )/((1)/(cos(x)sin(x))  )

Simplify the numerator:


\frac{{(2(sin(x)-cos(x)))/(sin(2x)) }  }{(1)/(sin(x)) * (1)/(cos(x))  }

Divide the fractions: (a/b)/(c/d) = (a * d)/(b * c):


((-cos(x)+sin(x))*2cos(x)sin(x))/(sin(2x))

Use the identity: 2cos(x)sin(x) = sin(2x):


(sin(2x)(-cos(x)+sin(x)))/(sin(2x))

Cancel out the common factor (sin(2x)):

-cos(x) + sin(x)

Simplify:

sin(x) - cos(x)

User RezaNikfal
by
7.6k points