3.1k views
5 votes
Sec theta - Csc theta / (csc theta)(sec theta)

Sec theta - Csc theta / (csc theta)(sec theta)-example-1

1 Answer

2 votes

Answer:

sin(x)-cos(x)

Explanation:


((1)/(cos(x)) - (1)/(sin(x))  )/((1)/(sin(x)) * (1)/(cos(x))  )

Simplify the denominator:


((1)/(cos(x)) - (1)/(sin(x))  )/((1)/(cos(x)sin(x))  )

Simplify the numerator:


\frac{{(2(sin(x)-cos(x)))/(sin(2x)) }  }{(1)/(sin(x)) * (1)/(cos(x))  }

Divide the fractions: (a/b)/(c/d) = (a * d)/(b * c):


((-cos(x)+sin(x))*2cos(x)sin(x))/(sin(2x))

Use the identity: 2cos(x)sin(x) = sin(2x):


(sin(2x)(-cos(x)+sin(x)))/(sin(2x))

Cancel out the common factor (sin(2x)):

-cos(x) + sin(x)

Simplify:

sin(x) - cos(x)

User RezaNikfal
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories