205k views
1 vote
The area of the figure

The area of the figure-example-1

1 Answer

4 votes

Answer:

The Area of Δ TOP is 43.55 units².

Explanation:

Given:

P ≡ ( x₁ ,y₁ ) ≡ ( -5 , -7)

T ≡ ( x₂ ,y₂ ) ≡ ( 1 , 8)

O ≡ ( x₃ ,y₃ ) ≡ ( 6 , 6)

To Find :

Area of Δ TOP = ?

Solution :

We have


\textrm{Area of Triangle TOP} = (1)/(2)* Base* Height\\\textrm{Area of Triangle TOP} = (1)/(2)* OT* PT

Now Distance formula we have


l(PT) = \sqrt{((x_(2)-x_(1))^(2)+(y_(2)-y_(1))^(2) )}


l(OT) = \sqrt{((x_(3)-x_(2))^(2)+(y_(3)-y_(2))^(2) )}

Substituting the given values we get


l(PT) = \sqrt{((1--5)^(2)+(8--7)^(2) )}\\l(PT) = \sqrt{((1+5)^(2)+(8+7)^(2) )}\\l(PT) = \sqrt{((6)^(2)+(15)^(2) )}\\l(PT) = √(261)\\l(PT) = 16.16\ units

And


l(OT) = \sqrt{((x_(3)-x_(2))^(2)+(y_(3)-y_(2))^(2) )}\\l(OT) = \sqrt{((6-1)^(2)+(6-8)^(2) )}\\l(OT) = \sqrt{((5)^(2)+(-2)^(2) )}\\l(OT) = √(29)\\l(OT) = 5.39\ units

Now substituting OT and PT in area formula we get


\textrm{Area of Triangle TOP} = (1)/(2)* 5.39* 16.16\\\textrm{Area of Triangle TOP} = 43.55\ units^(2)

Therefore, Area of Δ TOP is 43.55 units².

User Dyoo
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories