Answer:
The horizontal component of the minimum force is 144.24 N.
Step-by-step explanation:
Given that,
Loaded = 23.90 kg
Height = 0.370 R
Where, R=wheel's radius
We need to calculate the acceleration
Using formula of acceleration
![R^2=a^2+(R-h)^2](https://img.qammunity.org/2020/formulas/physics/college/qf57guyrv8fvu79w7j61amtz2uhqpecn4l.png)
![a^2=R^2-(R-h)^2](https://img.qammunity.org/2020/formulas/physics/college/88i8hxz3rymqldwgpu5mga6tijw9n28bwo.png)
Put the value into the formula
![a^2=R^2-(R-0.370R)^2](https://img.qammunity.org/2020/formulas/physics/college/zlxiwcufub785rsr7lj8m804yfq0ekoryn.png)
![a=√(0.631R^2)](https://img.qammunity.org/2020/formulas/physics/college/1qz9ju9791mrwj0d2h3c9b89u3fihenxod.png)
![a=0.776R](https://img.qammunity.org/2020/formulas/physics/college/koiwa7j0m2vnju701br9rhv5imj2h2rfxe.png)
We need to calculate the horizontal component of the minimum force
Using moment about center of point of contact
![P_(x)(R-h)=(mg)/(2)* a](https://img.qammunity.org/2020/formulas/physics/college/ai7jjbvgs60t72zzz2eh91bnev5ndf0x5m.png)
![P_(x)(R-0.370)=(23.90*9.8)/(2)*0.776R](https://img.qammunity.org/2020/formulas/physics/college/t57fg57sy9aqexx2m2x61lxofej8sg9ft0.png)
![P_(x)=(23.90*9.8*0.776R)/(2(R-0.370))](https://img.qammunity.org/2020/formulas/physics/college/zq1guxazzpoldqlilw5qdwgwh2k3l7ft70.png)
![P_(x)=144.24\ N](https://img.qammunity.org/2020/formulas/physics/college/l3uj9ynk75zo9qcipk9mhvgjrizan6eypv.png)
Hence, The horizontal component of the minimum force is 144.24 N.