Answer:
Explanation:
Given that there is a function of x,
![f(x) = 2sin x + 2cos x,0\leq x\leq 2\pi](https://img.qammunity.org/2020/formulas/mathematics/college/g7i20sg0twav6dwrft6o3rmx6z3ajc3d97.png)
Let us find first and second derivative for f(x)
![f'(x) = 2cosx -2sinx\\f](https://img.qammunity.org/2020/formulas/mathematics/college/4y2tvdwrsq82czj333gljb1ec7ipi1jl6v.png)
When f'(x) =0 we have tanx = 1 and hence
a) f'(x) >0 for I and III quadrant
Hence increasing in
![(0, \pi/2) U(\pi,3\pi/2)\\](https://img.qammunity.org/2020/formulas/mathematics/college/su3fg3p4svkdsl9skrbctf6m6s1ez54tog.png)
and decreasing in
![(\pi/2, \pi)U(3\pi/2,2\pi)](https://img.qammunity.org/2020/formulas/mathematics/college/rl7zj05t3setmbdfkglmc2ewpguey5xxx1.png)
![x=(\pi)/(4), (3\pi)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/xzw0fy2m73qb8e53hznl4ddkzy7bc2qyn3.png)
![f](https://img.qammunity.org/2020/formulas/mathematics/college/9xlgerfkgpl4ynovtavshms7n0wcklai2u.png)
Hence f has a maxima at x = pi/4 and minima at x = 3pi/4
b) Maximum value =
![2sin \pi/4+2cos \pi/4 =2√(2)](https://img.qammunity.org/2020/formulas/mathematics/college/gorm6d6qjkaof3ht7rb38dq1yyy7w1ndn6.png)
Minimum value =
![2sin 3\pi/4+2cos 3\pi/4 =-2√(2)](https://img.qammunity.org/2020/formulas/mathematics/college/f6uiovajlo5oam05quup7y7nq1ooflmfes.png)
c)
f"(x) =0 gives tanx =-1
![x= 3\pi/4, 7\pi/4](https://img.qammunity.org/2020/formulas/mathematics/college/luatfdg67as1atcdt00qmvtaszpelceh56.png)
are points of inflection.
concave up in (3pi/4,7pi/4)
and concave down in (0,3pi/4)U(7pi/4,2pi)